Algebraic Number Theory End-semestral test

INSTRUCTIONS: Total time 3 hours. Solve any **five** problems. Total maximum marks = 50, all problems carry equal weight. Minkowski's constant for a number field K of degree n is $\frac{n!}{n^n} (\frac{4}{\pi})^s$, where 2s is the number of non-real embeddings of K into \mathbb{C} . You may use any result proved in the class without proof.

- 1. True or False (Explain): Let K be a number field and n be a positive integer. Then there are only finitely many ideals in \mathcal{O}_K with norm n.
- 2. Prove that the ideal $(2, 1 + \sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$ is not principal.
- 3. Prove that $\mathbb{Z}[\zeta_5]$ is a PID, where ζ_5 is a primitive fifth root of unity in \mathbb{C} .
- 4. Prove that for any positive integer m > 1, and k relatively prime to m, $1 + \omega + \omega^2 + \cdots + \omega^{k-1}$ is a unit in $\mathbb{Z}[\omega]$, where ω is a primitive mth root of unity in \mathbb{C} .
- 5. Let K be a number field having odd degree over \mathbb{Q} . Determine the torsion part of the unit group of K.
- 6. Let K be a real quadratic number field (i.e. has only real embeddings). Prove that there is a unit $u \in \mathcal{O}_K^{\times}$ such that $\mathcal{O}_K^{\times} = \{\pm u^k | k \in \mathbb{Z}\}$. Prove that we can choose u with u > 1 and that such u is unique (such a generator for \mathcal{O}_K^{\times} is called the fundamental unit for K).
- 7. Let K and L be number fields, L/K a Galois extension with Galois group G. Let P be a nonzero prime ideal in \mathcal{O}_K that is inert in L, i.e. $P\mathcal{O}_L$ is a prime ideal. Prove that G is cyclic.